
Bringing High
Throughput Computing
to the Network with

Lark

Wednesday, May 8, 13

Outline

• Since when was the network missing?

• Resource management in HTCondor.

• Network Namespaces in HTCondor.

• Networking-aware policies and policy-aware
networks.

• Expanding the network ecosystem.

• Futures.

Wednesday, May 8, 13

Part I:
Since when was the
network missing?

Wednesday, May 8, 13

In the beginning...
• The network has never been explicitly managed by the HTC

layer.

• Instead, it was implicitly assumed to always be there - like
power. Like power, if it’s not present, it was considered
outside the upper layer’s control.

• Within HTCondor, a lot of logic is devoted to retries in case
the network is unreliable. However, retries - while valuable -
are not equivalent to management.

• For quite some time, this has been a reasonable assumption.

• We ran batch systems on clusters and HTC-oriented
clusters tended to have flat, boring networks.

Wednesday, May 8, 13

But Wait!

• Some of these assumptions have been changing:

• HTCondor is used to manage and schedule resources in
overlay pools which may have a very heterogeneous
underlaying network.

• Jobs are increasingly network connected - gone is the day
where all jobs have a few KB of input, a few KB of output, and
run for hours.

• We see multi-GB input/output sandboxes, jobs that read in
multi-GB, and jobs that need access to a firewalled server.

• These are the jobs we run! Think about the jobs we ignore -
what if my “job” serves data to others in a pipeline?

Wednesday, May 8, 13

Wednesday, May 8, 13

Wednesday, May 8, 13

Overlay Pools

Site A - PBS Site B -
HTCondor

Site C -
OpenStack

Batch
Job

Batch
Job

Batch
Job

Batch
Job

Batch
Job

Batch
Job VM VM VM

Suppose we have three sites which allocate resources - a
batch job or a VM - to us.

•An overlay pool is formed when we treat the aggregate
of our resources as a single batch pool.
•Batch jobs which create the overlay pool are referred to
as pilots or glideins.

Wednesday, May 8, 13

Overlay Pool

Overlay Pools
Site A - PBS Site B -

HTCondor
Site C -

OpenStack
Batch
Job

Batch
Job

Batch
Job

Batch
Job

Batch
Job

Batch
Job VM VM VM

Pool
Manager

It’s probably reasonable to assume a homogeneous
network at each site - but no safe assumptions can be

made between sites!
Wednesday, May 8, 13

So What?
• These deficiencies pop up in various places in our

HTCondor usage:

• Long transfer wait times.

• Priority inversion due to transfers.

• Scheduler continues to accept matches when
underwater.

• Or even trying to start jobs requiring 1TB of input at
a site with a 1Mbps network connection.

• We don’t even consider crossing / tunneling over
network boundaries!

Wednesday, May 8, 13

And What Now?

• Lark!

• Reactively - Provide network
performance monitoring data into the
HTCondor ecosystem, taking it into
account for scheduling purposes.

• Proactively - Collaborate with &
manipulate the network to satisfy job
policies.

Wednesday, May 8, 13

Lark

• NSF-funded (NSF #1245864), 2-year project
through the CC-NIE program. We want to
take the first steps at bridging DHTC and the
network layer.

• Main focus is integrating HTCondor with
advanced network technologies.

• Includes hardening/deploying IPv6 support,
integrating with perfSONAR, DYNES, and
OpenFlow. Will touch on all these today.

Wednesday, May 8, 13

Part II:
Resource Management

in HTCondor

Wednesday, May 8, 13

Anatomy of a
HTCondor Pool

HTCondor Pool

Central Manager

Collector Negotiator

Submit Node

ScheddUser

Submit Node

ScheddUser

Worker Node

Worker Node

Worker NodeWorker Node

Job Job

Job

Job

Startd Startd

Startd

Startd

Wednesday, May 8, 13

HTCondor Worker
Nodes

Worker Node

Master

Procd

Job

Job

Job

Startd

Starter

Starter

Starter

Wednesday, May 8, 13

Managing Resources -
The Art of Making Boxes
• The perfect box:

• Allows nesting - sub-delegate resources.

• Does not require superuser privileges.

• Can’t be escaped.

• Portable across OSs

• Allows full management - creation/
destruction, monitoring, limiting.

http://research.cs.wisc.edu/htcondor/HTCondorWeek2013/
presentations/ThainG_BoxingUsers.pdf

Wednesday, May 8, 13

http://research.cs.wisc.edu/htcondor/HTCondorWeek2013/presentations/ThainG_BoxingUsers.pdf
http://research.cs.wisc.edu/htcondor/HTCondorWeek2013/presentations/ThainG_BoxingUsers.pdf
http://research.cs.wisc.edu/htcondor/HTCondorWeek2013/presentations/ThainG_BoxingUsers.pdf
http://research.cs.wisc.edu/htcondor/HTCondorWeek2013/presentations/ThainG_BoxingUsers.pdf

Resource Management
• Resource management in HTCondor happens in several layers /

daemons. All of them need to be made network-aware.

• Collector - database of all known resources and resource
requests.

• Negotiator - matches available resources and resource
requests based on policy.

• Schedd - Manages and schedules a queue of jobs; posts the
resource requests to the collector.

• Startd - Manages the available resources on a worker node.

• Starter - Configures resources and launches the jobs.

• Procd - Monitors and manages processes on the worker node.

Wednesday, May 8, 13

Putting Users in a Box
• The HTCondor project has been increasingly focused on

resource management on the worker node:

• Accounting: CPU, memory usage, block IO. (Mostly
via cgroups)

• Isolation: PID namespaces, chroots, per-job /tmp
directories. (Mostly via namespaces)

• Resource management: CPU fairshare & affinity,
memory limits, guaranteed process killing. (Mostly via
namespaces, cgroups, and obscure syscalls)

• What’s missing? The network!

Wednesday, May 8, 13

Example - PID
Namespaces

Worker Node

System PID Namespace

condor_starter
PID 2729

condor_master
PID 2727

init
PID 1

Initial Configuration

The PID namespace is a system resource
configured by the starter for the job.

Wednesday, May 8, 13

Example - PID
Namespaces

Worker Node

System Network Namespace

Starter forks a process using the CLONE_NEWPID,
creating a new namespace

condor_starter
PID 2729

condor_master
PID 2727

init
PID 1

Job-Private PID Namespace

condor_starter
PID 2729

clone(…)
CLONE_NEWPID

View from outside

Wednesday, May 8, 13

Example - PID
Namespaces

Worker Node

System Network Namespace

condor_starter exec's the job process

Job-Private PID Namespace

Job
PID 1

View from inside

The job believes itself to be PID 1 - the namespace
provides a different view of the system

Wednesday, May 8, 13

Part III:
Network Namespaces

Wednesday, May 8, 13

A network box
• We want to provide a network interface per job and

force the job to work exclusively with this interface.

• This will allow the job to be directly addressable by
the network.

• Manage the interface and you manage the job’s
network.

• In Linux, we can isolate a set of processes to a specific
set of network interfaces using a network namespace.
Along with a pair of virtual ethernet pipe devices, we can
integrate the job to the network.

Wednesday, May 8, 13

Network Namespace -
A flipbook

Worker Node

System Network Namespace

External Network

Physical Network
Device

192.168.0.1

Initial Configuration

condor_starter

Wednesday, May 8, 13

Worker Node

System Network Namespace

External Network

Physical Network
Device

192.168.0.1

Starter creates network pipes

condor_starter

Network Pipe
Device

Network Pipe
Device

Wednesday, May 8, 13

Worker Node

System Network Namespace

External Network

Physical Network
Device

192.168.0.1

Starter creates a helper process
Helper configures IPTables and assigns addresses

condor_starter

Network Pipe
Device

10.0.0.1
Network Pipe

Device

IPTables-based
Nat/Routing,
Accounting

Helper script

Wednesday, May 8, 13

Worker Node

System Network Namespace

External Network

Physical Network
Device

192.168.0.1

Starter forks new process with new network namespace

condor_starter

Job-Private Network
Namespace

condor_starter

Network Pipe
Device

10.0.0.1
Network Pipe

Device

IPTables-based
Nat/Routing,
Accounting

Wednesday, May 8, 13

Worker Node

System Network Namespace

External Network

Job-Private Network Namespace

Physical Network
Device

192.168.0.1

Network Pipe
Device

10.0.0.1

Network Pipe
Device

10.0.0.1

condor_starter

Network Pipe

IPTables-based
NAT/Routing,

Accouning

condor_starter

Parent starter passes one end of network pipe to network namespace,
Child starter configures routing and IP address

Wednesday, May 8, 13

Worker Node

System Network Namespace

External Network

Job-Private Network Namespace

Physical Network
Device

192.168.0.1

Network Pipe
Device

10.0.0.1

Network Pipe
Device

10.0.0.1

User Process

Network Pipe

IPTables-based
NAT/Routing,

Accouning

Network
Calls

condor_starter

Final Configuration

Wednesday, May 8, 13

Capabilities
• The last few slides illustrated configuring a NAT.

• Bridging the job behaves similarly, except we now
need to figure an appropriate network
configuration:

• Statically - admin specifies an available range of
IP addresses HTCondor can use, per node.

• DHCP - Discovery/Offer multicast prior to
device creation; Request/Ack done post-fork.

• IPv6 - SLAAC. (Oh please oh please oh please)

Wednesday, May 8, 13

In the end

• At the end of the process, the job has its
own functional network device, hooked up
to the network in some way.

• Depending on whether in NAT or bridge
mode, the job is addressable by the host
networking subsystem or external network
devices.

• (And this is where the fun starts)

Wednesday, May 8, 13

Part IV:
Network-aware

policies
and policy-aware networks

Wednesday, May 8, 13

Now what?

• Once we have a handle to the network, what do
we want to do with it?

• Accounting - one of our first drivers. Given a
job, how much money should I charge for
network usage?

• Network layer management - Force job
to keep within its allocated resources.

• Policy - What actions is the job allowed to
perform?

Wednesday, May 8, 13

Job Network
Accounting

• How many bytes did my job read from the network?

• Fairly straightforward to ask from a VM, maddeningly difficult
for batch systems.

• We take the per-job network device and run all the packets
through an IPTables chain.

• Lark sets up two no-op rules that match packets in and out,
respectively. These get reported to the job accounting for
HTCondor.

• There are hooks for the sysadmin to add additional rules
that are read by the accounting. For example, we can
separately record on-campus traffic versus off-campus traffic.

Wednesday, May 8, 13

Policies

• There are some simple policies we can
enforce in NAT-mode:

• No network: the job has no network
connectivity.

• Host-level bandwidth limits: Hand
out only certain amounts of host
bandwidth to each job.

Wednesday, May 8, 13

Bandwidth Management

• By adding additional iptables rules, we can
do rudimentary host-level bandwidth
management.

• We can force the jobs to share the node
bandwidth equally - or even do per-user
shares.

• However, in NAT-mode, we are limited to
the local host’s network.

Wednesday, May 8, 13

Network policies

• What happens if we want to implement a policy
which requires interacting with larger network?

• For example, what if a specific compute job
needs access to a file server behind a firewall?

• How about limiting access to a license server
to a certain set of users?

• We’ll need some help from the network world...

Wednesday, May 8, 13

OpenFlow and SDN
(in a slide or two)

• Routers tend to be divided into the data plane and control plane.

• The data plane is simple - a table of rules on how to handle packets, based on their headers.

• The control plane is complex - various distributed algorithms for setting up the tables in the
data plane.

• For example, the control plane is in charge of doing shortest path calculations for
packets across the network.

• Very hard to do correctly, very expensive, changes very slowly.

• Software defined networking - replace the control plane silicon with a callout to a piece of
software. The OpenFlow protocol is a standard for having the data plane managed by an external
controller (typically a central server).

• By replacing hardware with software and switching from decentralized with centralized, we
can .

• OpenFlow lives between the switch and the controller and is a open standard. It’s a
southbound protocol.

• From the controller to the outside world (management, other software agents) is the
northbound protocol. This is not standardized.

Wednesday, May 8, 13

OpenFlow-enabled
Network

The Stanford Clean Slate Program http://cleanslate.stanford.edu

Controller

OpenFlow Switch

Flow
Table

Secure
Channel

PC
OpenFlow

Protocol

SSL

hw

sw

OpenFlow Switch specification

OpenFlow Switching

http://www.openflow.org/documents/OpenFlow.ppt
Wednesday, May 8, 13

http://www.openflow.org/documents/OpenFlow.ppt
http://www.openflow.org/documents/OpenFlow.ppt

Watch as Brian defies
Murphy’s Law and tries

a live demo...

Wednesday, May 8, 13

In case the demo doesn’t agree with me...
Wednesday, May 8, 13

(lark%demo%diagram)%

18%

Lark Enabled
Execution Host

OpenFlow
Switch

Cisco ONE
Controller

Internet

Campus
Border
Firewall

Tr
us

te
d

Tr
af
fic

starter inserts rules
based on job metadata

N
or

m
al

 T
ra

ffi
c

Presented at Cisco Live 2013 - idea of incorporating the
network with the scheduler really resonated there.

Wednesday, May 8, 13

Other policies under
consideration

• Prioritization and bandwidth limiting -
having the site border understand the different
classes of traffic and prioritize / drop accordingly.

• I.e., “prioritize CMS production over CMS
Xrootd over OSG usage”

• Network Slicing - Isolate different jobs on the
same network from each other.

• Network flocking - joining a job temporarily
to a remote network.

Wednesday, May 8, 13

Across the campus,
Across the world

• On the grid, we are seeing jobs increasingly utilizing the network.

• This utilization is largely unmanaged; available network
connectivity greatly affects the application performance.

• If we cannot get a guaranteed amount of bandwidth, it may not be
reasonable to run the jobs remotely.

• Once we plug the job into the local network, the local network can
then make routing decisions about the wider area.

• I2 has a project, DYNES, that provides wide-area circuit
reservations. Idea is to use DYNES to guarantee certain amounts
of bandwidth between UW and UNL.

• “We have the technology,” but we haven’t quite been able to get
everything to work. It’ll be a busy summer...

Wednesday, May 8, 13

Part V:
Expanding the

Ecosystem

Wednesday, May 8, 13

Thinking outside the
worker node

• The worker node is only one place where
resources are managed and relevant in
HTCondor.

• We’d like to give the HTCondor scheduler
information about the network
performance.

Wednesday, May 8, 13

What’s up,
perfSONAR?

• PerfSONAR is an appliance designed to measure
and record network performance. Example hosts:

• http://hcc-ps01.unl.edu/ - packet loss
measurements.

• http://hcc-ps02.unl.edu/ - throughput
measurements.

• Idea is to place perfSONAR measurement hosts
in various places of the network.

Wednesday, May 8, 13

http://hcc-ps01.unl.edu/
http://hcc-ps01.unl.edu/
http://hcc-ps01.unl.edu/
http://hcc-ps01.unl.edu/

Wednesday, May 8, 13

Gathering Network
Data

• perfSONAR has a global set of lookup services for
discovering these measurement hosts.

• You can then query each service individually for its
performance data.

• Lark does the work of periodically “spidering” the
perfSONAR network, then pushes this to the
HTCondor collector.

• This provides a way to quickly - and centrally -
analyze the point-to-point connectivity of the grid
we’re running on.

Wednesday, May 8, 13

Using Network Data

• Now that I can tell you the available bandwidth
between the submitter (in Nebraska) and the
worker node (in FNAL), we need to do
something with it.

• Our first approach - summer 2013 - will be to
implement circuit breakers.

• If the scheduler can determine there’s no
available bandwidth to a site, do not match jobs
which require more than X GB of input data.

Wednesday, May 8, 13

Part VI: Futures

Wednesday, May 8, 13

Job Lifetime
• Right now, all our networking policies apply to the

job while it’s running.

• There’s two other pieces of the job lifetime relevant
to networking:

• File stagein,

• File stageout.

• We’re looking at allowing jobs to specify different
networking configurations for each part of the
lifetime.

Wednesday, May 8, 13

OpenFlow
• Right now, we integrate with OpenFlow controllers in a simplistic

manner - we setup a new static rule at the job beginning and
delete it at the end.

• The network doesn’t really have any knowledge about our
jobs. Each worker needs to know, for example, the routes
needed for the job.

• Next step is to add a HTCondor module to an OpenFlow
controller. We’d like to tell the switch what job we’re starting by
sending it the job description, then having it decide what rules to
add.

• First step in having the switch providing intelligence back to the
scheduler.

Wednesday, May 8, 13

OpenVSwitch
• In Linux, bridges are relatively tricky.

• The implementation and API are designed to be configured
statically.

• We’ve experienced a few headaches in bringing devices onto the
network for a few seconds, then having them disappear forever.

• Configuration interface is ioctl’s.

• OpenVSwitch is designed from the ground-up for interacting with
dynamic virtualized devices and OpenFlow.

• We could have the OpenFlow controller even manage the jobs
on the host level.

• We may swap out Linux bridging with OpenVSwitch in the future.

Wednesday, May 8, 13

DYNES / Circuits
• We’ve had quite a few technical difficulties in automating the

circuit setup.

• We aren’t giving up on the idea of circuits.

• However, we are looking harder at tunneling / overlaying our own
network on the existing one.

• More traditional network approach - “smart ends, dumb
middle” and does not violate layering.

• No longer requires

• Will allow us to continue to increase the reach of our network
integration by integrating the job into the overlay network.

• We can circle back later and do bandwidth reservations.

Wednesday, May 8, 13

perfSONAR

• There are several unsolved problems in
effectively using the perfSONAR data:

• It’s difficult to discern data quality.

• Mapping network locations to grid sites /
worker nodes is currently done by hand.

• We have several levels of scheduling in our
grid system - should HTCondor or
glideinWMS take networking into account?

Wednesday, May 8, 13

Concluding...
• A resource manager can no longer ignore network availability

and topology, either on the campus or running globally.

• With Lark’s worker node integration, HTCondor can
manipulate the host and local network at the per-job level.

• This allows us to expose application-level details to the
network that were never previously available.

• Lark is working to aggregate network performance data into
the HTCondor ecosystem and exploring ways to use it for
scheduling.

• These are all the first steps into bringing our distributed high
throughput computing ecosystem into the network.

https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?
p=LarkProject

Wednesday, May 8, 13

https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=LarkProject
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=LarkProject
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=LarkProject
https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=LarkProject

